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Abstract 
The article addresses algebraic methods for coloring arbitrary cubic graphs. The results 

are partially based on the corollaries of the Tait theorem. In the article, the authors propose 
using a fourth-order Klein group transform in order to formally describe the coloring of a cu-
bic graph. The transition to graph coloring is done by coloring the edges of basis cycles. Over-
all, the mathematical framework for describing topological graph drawing is presented and 
formally described in the article. Based on the edge coloring, the formation of colored disks 
and the mathematical description of the operation of colored disks rotation with subsequent 
recoloring of the edges are considered. It is shown that the operation of rotating color disks 
can be represented as a ring sum (addition modulo 2) of cycles. In order to unambiguously 
describe the representation of colored disks by means of basis cycles, the authors introduce 
the concept of embeddability of colored disks. For clarity, the authors provide several exam-
ples illustrating the application of colored disks rotation operation to concrete cubic graphs. 
The relation between the system of induced cycles generated by the rotation of graph vertices 
and the coloring of 2-factors of the cubic graph is established in the present study. It is shown 
that the ring sum of all cycles included in the colored 2-factors of the graph is an empty set. 
The article also addresses the issues of coloring non-planar cubic graphs. The relationship be-
tween basis cycles and a rim in a non-planar cubic graph and a ring sum of colored 2-factors 
is explicitly shown in the article. In addition, the relationship between the colored vertex rota-
tion of a plane cubic graph and the closed Heawood paths is revealed and formally described. 
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1. Introduction 
In [3], a theorem was proved on the existence of a colored disk passing through linked edges 
in a basis simple cycle of a planar correctly colored cubic graph H. Based on the proved theo-
rem, it was shown that the four-color problem can be represented as its consequence. The in-
troduction of a new operation – the rotation of a colored disk – made it possible to recolor the 
edges in a plane colored cubic graph and construct a visual coloring algorithm. The presented 
method allows recursively color the edges of the subsequent plane cubic graph H with n ver-
tices in three colors based on the previous colored cubic graph with n-2 vertices. 
 

As for coloring there is a relation between the maximal planar graph G and the planar cubic 

graph Н dual to G. This relation is set by the following theorem. 
Theorem 1. (Tait) [7]. A bridge-free trivalent plane graph can be face-colored with 4 colors 
if and only if it can be edge-colored with 3 colors. 
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In other words, let Н be a plane homogeneous cubic graph without isthmuses; a necessary 
and sufficient condition for the possibility of such coloring the faces of the graph in four col-
ors, in which no two adjacent faces are colored the same color, is that the chromatic class of 
graph Н be equal to three [4]. 
Thus, the coloring of edges and faces of a plane cubic graph is adequate to the coloring of ver-

tices and edges in a maximally plane graph G. Therefore, it is convenient to consider only the 
process of coloring a plane graph. 
Tait’s theorem not only establishes a relation between the coloring of vertices of a maximally 
plane graph and the coloring of edges of a cubic graph dual to it, but also indicates the use of 
the fourth-order transformation of the Klein group for coloring a graph [2]. This transfor-
mation allows connecting in a single whole the coloring of faces of a plane cubic graph H in 
four colors and coloring of edges in three colors. 
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Further development of the methods of coloring edges and faces in a plane cubic graph re-
vealed the existence of a close relationship between the coloring and the topological drawing 
of a plane graph. In this article, we consider an algebraic framework for coloring cubic 
graphs. 

2. Mathematical framework for describing the topological 
drawing of a graph 
Graph G = (V,E) is generally defined by a set of vertices V, a set of edges E and a triple predi-
cate Р in the form of adjacency (incidence) matrix [1,6] without describing a drawing of the 
graph. For a topological description of planar graph drawing we use the concept of graph ver-
tex rotation introduced by G. Ringel [5]. 
Definition 1. Given a graph G, a rotation of a vertex A is an oriented cyclic order (or a cy-
clic permutation) of all arcs incident with A. 
 

 
Fig. 1. Graph G and the rotation of its vertices. 

 
Definition 2. A rotation of graph vertices   is the totality of the rotations of all vertices of 
G. 
We will further represent the rotation of all vertices of a graph in the form of diagrams and 
denote it as  . For example, for the graph drawing depicted in Fig. 1, the vertex rotation dia-
gram has the following form: 

1: 2 3 4  

2: 6 5 3 1 

3: 2 5 4 1 

4: 1 3 5 6 



 

  

5: 3 2 6 4 

6: 2 4 5  

For convenience, the numbers in the vertex rotation diagram, indicate the numbers of verti-
ces. In turn, the rotation of graph vertices induces a system of oriented simple cycles. In order 
to obtain such a system, we carry out a traversal along the edges, considering the transition 
from edge to edge according to the rotation of the vertices. We should note that during rota-
tion each oriented edge always appears twice, the second time – in the opposite direction and 
in different cycle [5]. 
For example, for a plane graph G with rotation shown in Fig. 1, we have the following system 
of induced cycles: <v1,v3,v2>, <v1,v4,v3>, <v2,v3,v5>, <v5,v3,v4>, <v2,v5,v6>, <v6,v5,v4>, 
<v2,v6,v4,v1>. We will represent induced cycles in the form of a cyclic tuple of vertices describ-
ing a closed oriented path (either clockwise or counterclockwise, but always specifying this 
explicitly). Induced cycles can also be represented as sets of edges: {e1,e2,e4}, {e2,e3,e7}, 
{e7,e8,e9}, {e4,e5,e8}, {e5,e6,e11}, {e9,e10,e11}. Another induced cycle {e1,e3,e6,e10} is the rim of the 
graph. It is equal to the ring sum of the cycles representing the boundaries of the graph draw-
ing faces [5]. Thus, the rotation of graph vertices does not only represent a diagram of the 
vertices rotation, but it is also a system of simple cycles that are the boundaries of the faces 
(2-cells) of the plane drawing of the graph. On the other hand, such cycles form the basis of 
the subspace of cycles. Henceforth, we shall denote them as the basis cycles. 
Induced oriented cycles can also be written as a closed sequence of oriented edges (arcs), e.g.: 
<v1,v3,v2> = (v1,v3) + (v3,v2) + (v2,v1). 
Definition 3. A topological drawing of a plane graph is a graph with a given rotation of ver-
tices. 

3. Construction of a colored disk 
The rotation of vertices   induces simple cycles that form a basis in the subspace of graph 
cycles C. To establish the coloring of a plane cubic graph H, it is necessary to color its edg-
es (Fig. 2). 
 

 
Fig. 2. Edge coloring in the plane cubic graph Н1. 

 
If the cubic graph H has a chromatic class of three, then its edges must be colored in three 
colors. The coloring assumes the presence of three edges of different colors for each vertex of 
graph H. We call a cubic graph with chromatic class equal to three a colored plane cubic 
graph H. E.g., the cubic graph shown in Fig. 2 is essentially a colored cubic graph H. Here, 
white color is designated with letter W or number 0, and on the graph drawings the edges of 
this color are represented with a dash-and-dot line. Red color is designated with letter R, or 
number 1, and on the graph drawings the edges of this color are represented with a solid line. 
Blue color is designated with letter B and number 2, and the edges of this color are represent-
ed with a dotted line on the graph drawings. In turn, green color is designated with letter G, 
or number 3, and edges of this color are represented with dashed line. According to Tait’s 



 

  

theorem, coloring of edges induces coloring of faces of a plane cubic graph H, and coloring of 
faces, in turn, induces coloring of edges. 
 

 
Fig. 3. Designation of colored lines. 

 
Definition 4. In a colored plane cubic graph, a colored disk is a closed path of even length 
with edges of only two colors. 
Thus, a red colored disk consists only of blue and green edges. A green colored disk consists 
only of blue and red edges. A blue colored disk consists only of green and red edges. The pro-
cess of constructing a color disk can be seen as a sequence of connecting colored edges of two 
colors: 

D = <v1,e1,v2,e2,…,vp-1,ep-1vp,ep,v1> (2) 
where p – is the length of a colored disk.  
Let us denote a colored disk with the Latin letter D and the name of a color. For example, the 
red colored disk DR of the plane cubic graph Н1 in Fig. 2 can be represented as a tuple: 
DR = <v1,e2,v5,e10,v10,e12,v6,e11,v7,e13,v8,e14,v9,e9,v4,e6,v3,e4,v2,e1,v1>; 
or taking into account the color of the edge indicated in square brackets: 
DR = <e2[2],e10[3],e12[2],e11[3],e13[2],e14[3],e9[2],e6[3],e4[2],e1[3]>. 
A colored disk in a plane cubic graph H can be represented as a ring addition of cycles [6]. 
Moreover, ring addition is carried out in the adjacency order of two cycles having a common 
edge of the disk’s color. For example, the colored induced cycles of the graph Н1 (which is 
shown in Fig. 2)  
с1 = {e2[2],e3[1],e10[3],e12[2]};  с2 = {e1[3],e3[1],e5[1],e11[3]}; 
с3 = {e4[2],e5[1],e7[1],e13[2]};  с4 = {e6[3],e7[1],e9[2],e14[3]}; 
с5 = {e8[1],e9[2],e10[3],e15[1]};  с6 = {e11[3],e12[2],e13[2],e14[3],e15[1]}; 
с0 = {e1[3],e2[2],e4[2],e6[3],e8[1]}. 
 
form the following colored 2-factors: 

Rc = с1   с2   с3   с4 = {e2[2],e3[1],e10[3],e12[2]}   {e1[3],e3[1],e5[1],e11[3]}    
  {e4[2],e5[1],e7[1],e13[2]}   {e6[3],e7[1],e9[2],e14[3]} =  

= {e2[2],e10[3],e12[2],e1[3],e5[1],e11[3]}   {e4[2],e5[1],e7[1],e13[2]}   
  {e6[3],e7[1],e9[2],e14[3]} = 

= {e2[2],e10[3],e12[2],e1[3],e11[3],e4[2],e7[1],e13[2]}   {e6[3],e7[1],e9[2],e14[3]} = 
= {e2[2],e10[3],e12[2],e1[3],e11[3],e4[2],e13[2],e6[3],e9[2],e14[3]} =  
= <e2[2],e10[3],e12[2],e11[3],e13[2],e14[3],e9[2],e6[3],e4[2],e1[3]>; 

Bc = (с4   с5)   (с2) = ({e6[3],e7[1],e9[2],e14[3]}   {e8[1],e9[2],e10[3],e15[1]})   
  ({e1[3],e3[1],e5[1],e11[3]}) = ({e6[3],e7[1],e14[3],e8[1],e10[3],e15[1]})   
  ({e1[3],e3[1],e5[1],e11[3]}) = (<e6[3],e7[1],e14[3],e15[1],e10[3],e8[1]>), 
(<e1[3],e5[1],e11[3],e3[1]>); 

Gc = (с1   с5)   (с3) = ({e2[2],e3[1],e10[3],e12[2]}   {e8[1],e9[2],e10[3],e15[1]})   
  ({e4[2],e5[1],e7[1],e13[2]}) = ({e2[2],e3[1],e12[2],e8[1],e9[2],e15[1]})   
  ({e4[2],e5[1],e7[1],e13[2]}) = (<e2[2],e3[1],e12[2],e15[1],e9[2],e8[1]>), 
(<e13[2],e5[1],e4[2],e7[1]>). 



 

  

Since all edges are involved in the coloring of a plane graph twice (according to MacLane’s 
theorem), then it follows from the construction: 
Corollary 1. The ring sum (addition modulo 2) of all the edges included in the colored disks 
is an empty set. 
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(3) 

A special case is represented by white cycles that are not included in expression (2), where 
the edges can be colored in three colors. For our example: 

Wc = c6   c0 = ({e11[3],e12[2],e13[2],e14[3],e15[1]})   ({e1[3],e2[2],e4[2],e6[3],e8[1]}). 
 

 
Fig. 4. The drawing of a colored plane cubic graph Н2. 

 
While the formation of color disks as a closed path of edges is carried out unambiguously, the 
formation of color disks by cycles has its own specific features. For illustration, let’s consider 
the following drawing of a colored graph Н2 (Fig. 4). For a given cubic graph Н2, we select the 
following basis cycles: 
c1 = {e1[3],e2[1],e5[2],e17[3]}, c2 = {e4[1],e5[2],e6[3],e8[1],e11[3],e16[1]},  
c3 = {e10[3],e11[2],e12[1],e14[3]}, c4 = {e14[3],e15[2],e16[1],e17[3]},  
c5 = {e2[1],e3[2],e12[1],e13[2],e15[2],e19[3],e28[1]},  
c6 = {e8[1],e9[2],e10[3],e13[2],e21[1],e23[3],e25[1],e26[3]}, c7 = {e6[3],e7[2],e9[2],e20[3]},  
c8 = {e1[3],e3[2],e4[1],e7[2],e18[1]}, c9 = {e22[2],e23[3],e24[2],e30[3],e32[1]},  
c10 = {e24[2],e25[1],e27[2],e33[1]}, c11 = {e26[3],e27[2],e28[1],e29[2],e34[3],e35[1]},  
c12 = {e30[3],e31[2],e33[1],e34[3]}, c13 = {e31[2],e32[1],e35[1],e36[3]}. 
 
Let’s form the rim of the graph: c0 = {e18[1],e19[3],e20[3],e21[1],e22[2],e29[2],e36[3]}.  
Next, we consider the case of the formation of a colored disk DB consisting of the following 
cycles: 

DB = c4  c5  c6  c7  c8 = {e14[3],e15[2],e16[1],e17[3]}  

 {e2[1],e3[2],e12[1],e13[2],e15[2],e19[3],e28[1]}  

 {e8[1],e9[2],e10[3],e13[2],e21[1],e23[3],e25[1],e26[3]}  

 {e6[3],e7[2],e9[2],e20[3]}  {e1[3],e3[2],e4[1],e7[2],e18[1]} = 
= {e14,e16,e17,e2,e12,e8,e10,e6,e1,e4,e19,e28,e21,e23,e25,c26,e20,e18} = 

=<e14[3],e16[1],e17[3],e2[1],e1[3],e4[1],e6[3],e8[1],e10[3],e12[1]>   
<e19[3],e28[1],e26[3],e25[1],e23[3],e21[1],e20[3],e18[1]>. 



 

  

 
As one can see, this set of cycles forms two unicolored disks. For the unambiguous formation 
of a color disk, we need to add cycles с1,с2,с3, which in turn also unambiguously form a col-
ored disk. 
For the graph presented in Fig. 6, the colored disks before rotation are as follows: 

DB1 = с1  с2  с3 = <e14[3],e16[1],e17[3],e2[1],e1[3],e4[1],e6[3],e8[1],e10[3],e12[1]>; 

DB2 = c4  c5  c6  c7  c8  с1  с2  с3 = 
= <e19[3],e28[1],e26[3],e25[1],e23[3],e21[1],e20[3],e18[1]>. 

DB3 = c12  c13 = <e30[3],e32[1],e36[3],e35[1],e34[3],e33[1]>; 
 
Thus, the concept of embeddability of colored disks emerges. Considering the cycles of the 
graph Н2, we can state that the cycles of the colored disk DB1 are embedded into the colored 
disk DB2. 
Let’s construct all the colored disks of the cubic graph Н2 (Fig. 4). 

DR1 = c1  c5  c3  c11  c13  c9 = 
= <e19[3],e29[2],e36[3],e22[2],e23[3],e24[2],e30[3],e31[2],e34[3],e27[2],e26[3],e13[2],e10[3], 
e11[2],e14[3],e15[2],e17[3],e5[2],e1[3],e3[2]>; 
DR2 = c7 = <e7[2],e20[3],e9[2],e6[3]>; 
DG1 = с10 = <e24[2],e33[1],e27[2],e25[1]>; 

DG2 = c1  c3  c4  c6  c8  с9  с10  с11  с12 = 
= <e18[1],e3[2],e2[1],e15[2],e12[1],e13[2],e28[1],e29[2],e35[1],e31[2],e32[1],e22[2],e21[1], 
e9[2],e8[1],e11[2],e16[1],e5[2],e4[1],e7[2]>; 
 
Notice that the disk DG2 is embeddable into the disk DG1. 

 
Fig. 5. Red 2-factor before rotation. 



 

  

 
Fig. 6. Blue 2-factor before rotation. 

 
Wc = c0 = <e18[1],e19[3],e20[3],e21[1],e22[2],e29[2],e36[3]>; 
Colored 2-factors are formed as a ring sum of the corresponding colored disks. For instance, 
for the graph Н2, the red disks are shown in Fig. 5. 

Rс = DR1  DR2 = (c1  c5  c3  c11  c13  c9)  (c7) = 
= <e19[3],e29[2],e36[3],e22[2],e23[3],e24[2],e30[3],e31[2],e34[3],e27[2],e26[3],e13[2],e10[3],e11[2], 

e14[3],e15[2],e17[3],e5[2],e1[3],e3[2]>  <e7[2],e20[3],e9[2],e6[3]>; 
 

 
Fig. 7. Green 2-factor before rotation. 



 

  

 
Fig. 8. Red 2-factor after rotation. 

 

The blue disks are shown in Fig. 6. 

Bс = DB1  DB2  DB3 = (с1  с2  с3)  (c4  c5  c6  c7  c8  с1  с2  с3)   

 (c12  c13) = (c4  c5  c6  c7  c8)  (c12  c13) = 

= <e14[3],e16[1],e17[3],e2[1],e1[3],e4[1],e6[3],e8[1],e10[3],e12[1]>  

 <e18[1],e20[3],e21[1],e23[3],e25[1],e26[3],e28[1],e19[3]>  

 <e30[3],e32[1],e36[3],e35[1],e34[3],e33[1]>; 
 
The green disks are shown in Fig. 7. 

Gс = DG1  DG2 = (c8  c1  c4  c3  c6  c11  c12  c9  c10)  (c10) = 

= c8  c1  c4  c3  c6  c11  c12  c9 = 
= <e2[1],e15[2],e12[1],e13[2],e28[1],e29[2],e35[1],e31[2],e32[1],e22[2],e21[1],e9[2],e8[1],e11[2], 

e16[1],e5[2],e4[1],e7[2],e18[1],e3[2]>  <e24[2],e33[1],e27[2],e25[1]>. 
 
The ring sum of all colored disks of the same color forms a 2-factor of the same color. For ex-
ample, in Fig. 5-7 the following colored 2-factors are shown: 

21 DRDRR c ; 321 DBDBDBB c ; 21 DGDGG c  

From the construction follows: 
Corollary 2. The ring sum (adding modulo 2) of all cycles involved in the formation of col-
ored 2-factors is an empty set: 

Rc Bc   Gc =  (4) 
The following expression establishes a relation between the colored 2-factors and the basis 
cycles of a plane cubic graph: 
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Corollary 3. The doubled sum of the basis cycles of the topological drawing and the rim is 
equal to the ring sum of the cycles of the colored 2-factors plus the doubled sum of the white 
cycles. 

4. Rotation of colored disks 
By rotation of a colored Hamiltonian disk, we mean a change in the sequence of coloring of 
the edges of a given disk. Disk rotation changes other colored disks. 



 

  

Consider the rotation of the colored disk DR2. During rotation, only the colors of the edges 
e6,e7,e9,e20 belonging to the colored disk DR2 change. The colors of other edges do not change. 
To define new sequences in colored disks, we attach the cycles belonging to the disk DR2 to 
other colored 2-factors. 

Rс = DR1  DR2 = (c1  c5  c3  c11  c13  c9)  (c7); 

Bс = DB1  DB2  DB3 = (c4  c5  c6  c7  c8)  (c12  c13)  (с7); 

Gс = DG1  DG2 = (c8  c1  c4  c3  c6  c11  c12  c9)  (с7); 
 
As a result, we obtain the coloring of red colored disks (Fig. 8): 

Rс = (c1  c5  c3  c11  c13  c9)  (c7) = 
= <e19[3],e29[2],e36[3],e22[2],e23[3],e24[2],e30[3],e31[2],e34[3],e27[2],e26[3],e13[2],e10[3],e11[2], 

e14[3],e15[2],e17[3],e5[2],e1[3],e3[2]>  <e7[3],e20[2],e9[3],e6[2]>; 
 
blue colored disks (Fig. 9): 

Bс = (c4  c5  c6  c7  c8)  (c12  c13)  (с7) = 

= {e14[3],e15[2],e16[1],e17[3]}  {e2[1],e3[2],e12[1],e13[2],e15[2],e19[3],e28[1]}   

{e8[1],e9[3],e10[3],e13[2],e21[1],e23[3],e25[1],e26[3]}  {e6[2],e7[3],e9[3],e20[2]}  

 {e1[3],e3[2],e4[1],e7[3],e18[1]}  {e30[3],e31[2],e33[1],e34[3]}   

 {e31[2],e32[1],e35[1],e36[3]}  {e6[2],e7[3],e9[3],e20[2]} = 
= {e14[3],e16[1],e17[3],e2[1],e12[1],e19[3],e28[1],e8[1],e10[3],e21[1],e23[3],e25[1],e26[3],e1[3], 
e4[1],e7[3],e18[1],e30[3],e33[1],e34[3],e32[1],e35[1],e36[3]} = 
= <e14[3],e16[1],e17[3],e2[1],e1[3],e4[1],e7[3],e18[1],e19[3],e28[1],e26[3],e25[1],e23[3], 

e21[1],e9[3],e8[1],e10[3],e12[1]>  <e30[3],e32[1],e36[3],e35[1],e34[3],e33[1]>; 
 
green colored disks (Fig. 10): 

Gс = (c8  c1  c4  c3  c6  c11  c12  c9)  (с7) = {e1[3],e3[2],e4[1],e7[3],e18[1]}   

{e1[3],e2[1],e5[2],e17[3]} {e14[3],e15[2],e16[1],e17[3]}  {e10[3],e11[2],e12[1],e14[3]}  

 {e8[1],e9[3],e10[3],e13[2],e21[1],e23[3],e25[1],e26[3]}  

 {e26[3],e27[2],e28[1],e29[2],e34[3],e35[1]}  

 {e30[3],e31[2],e33[1],e34[3]}  {e22[2],e23[3],e24[2],e30[3],e32[1]}  

 {e6[2],e7[3],e9[3],e20[2]} = {e15[2],e16[1],e11[2],e12[1],e8[1],e13[2],e21[1],e25[1],e27[2], 
e28[1],e29[2],e35[1],e31[2],e33[1],e22[2],e24[2],e32[1],e6[2],e18[1],e3[2],e4[1],e2[1],e5[2], 
e20[2]} = <e15[2],e12[1],e13[2],e28[1],e29[2],e35[1],e31[2],e32[1],e22[2],e21[1],e20[2],e18[1], 

e3[2],e2[1]>  <e5[2],e4[1],e6[2],e8[1],e11[2],e16[1]>  <e24[2],e25[1],e27[2],e33[1]>. 
 
Next, we form the rim of the graph, c0 = {e18[1],e19[3],e20[3],e21[1],e22[2],e29[2],e36[3]}.  
 

 
Fig. 9. Blue 2-factor after rotation. 



 

  

 
Fig. 10. Green 2-factor after rotation. 

 
A rule for determining the composition of disks after rotation. To determine the 
composition of colored disks after rotating a colored disk Y, it is necessary to recolor its edges 
and add cycles of colored disk Y to other colored 2-factors; then carry out the edge construc-
tion in accordance to (2). 
Of interest are colored cubic graphs in which white colored disks have an even length and 
their total length is 2m/3. 
For the colored cubic graph Н3 (Fig. 11), we select the following basis cycles: 
c1 = {e2[2],e3[1],e8[1],e10[2]};  c2 = {e1[3],e2[2],e4[1],e6[3]};    
c3 = {e9[3],e10[2],e11[1],e13[3]};  
c4 = {e4[1],e5[2],e7[2],e18[1]};  c5 = {e11[1],e12[2],e14[2],e23[1]};  
c6 = {e6[3],e7[2],e8[1],e9[3],e12[2],e15[3],e17[1],e24[3]}; 
c7 = {e16[2],e17[1],e20[1],e22[2]};  
c8 = {e15[3],e16[2],e18[1],e19[3]};  c9 = {e21[3],e22[2],e23[1],e24[3]}. 
 

  
Fig. 11. Coloring of the cubic graph Н3. Fig. 12. Recoloring of the cubic graph Н3. 

 



 

  

Next, form the rim, c0 = {e1[3],e3[1],e5[2],e13[3],e14[2],e19[3],e20[1],e21[3]}.  

Rс = DR1  DR2 = (c3  c5  c9)  (c2  c4  c8) = ({e9[3],e10[2],e11[1],e13[3]}  

 {e11[1],e12[2],e14[2],e23[1]}  {e21[3],e22[2],e23[1],e24[3]})  ({e1[3],e2[2],e4[1],e6[3]}  

 {e4[1],e5[2],e7[2],e18[1]}  {e15[3],e16[2],e18[1],e19[3]}) = 

= <e9[3],e10[2],e13[3],e14[2],e21[3],e22[2],e24[3],e12[2]>  

 <e1[3],e2[2],e6[3],e7[2],e15[3],e16[2],e19[3],e5[2]>;  

Bс = DB1  DB2 = (c1  c2  c3)  (c7  c8  c9) = ({e2[2],e3[1],e8[1],e10[2]}  

 {e1[3],e2[2],e4[1],e6[3]}  {e9[3],e10[2],e11[1],e13[3]})  ({e16[2],e17[1],e20[1],e22[2]}  

 {e15[3],e16[2],e18[1],e19[3]}  {e21[3],e22[2],e23[1],e24[3]}) = 

= <e3[1],e1[3],e4[1],e6[3],e8[1],e9[3],e11[1],e13[3]>  

 <e17[1],e15[3],e18[1],e19[3],e20[1],e21[3],e23[1],e24[3]>; 

Gс = DG1  DG2  DG3  DG4 = (c1)  (c4)  (c5)  (c7) = <e2[2],e3[1],e8[1],e10[2]>  

 <e4[1],e5[2],e7[2],e18[1]>  <e11[1],e12[2],e14[2],e23[1]>  <e16[2],e17[1],e20[1],e22[2]>. 

Wc = c6  c0 = {e6[3],e7[2],e8[1],e9[3],e12[2],e15[3],e17[1],e24[3]}  

 {e1[3],e3[1],e5[2],e13[3],e14[2],e19[3],e20[1],e21[3]}. 
 
Further we carry out the recoloring of edges, taking colored disks instead of white ones as a 
basis (Fig. 12). 
c1 = {e2[1],e3[2],e8[2],e10[1]},  c2 = {e1[3],e2[1],e4[1],e6[3]},    
c3 = {e9[3],e10[1],e11[1],e13[3]},  
c4 = {e4[1],e5[2],e7[2],e18[1]},  c5 = {e11[1],e12[2],e14[2],e23[1]},  
c6 = {e6[3],e7[2],e8[2],e9[3],e12[2],e15[3],e17[2],e24[3]}, 
c7 = {e16[1],e17[2],e20[2],e22[1]},  
c8 = {e15[3],e16[1],e18[1],e19[3]},  c9 = {e21[3],e22[1],e23[1],e24[3]}. 
 
And determine the rim as c0 = {e1[3],e3[2],e5[2],e13[3],e14[2],e19[3],e20[2],e21[3]}. 

Rс = DR1  DR2 = (c6)  (c0) = (c6)  (c1  c2  c3  c4  c5 c6  c7  c8  c9) = 

= <e6[3],e7[2],e15[3],e17[2],e24[3],e12[2],e9[3],e8[2]>  

 <e1[3],e3[2],e13[3],e14[2],e21[3],e20[2],e19[3],e5[2]>; 

Bс = DB1  DB2  DB3  DB4 = (c2)  (c3)  (c8)  (c9) = <e1[3],e2[1],e6[3],e4[1]>  

 <e9[3],e10[1],e13[3],e11[1]>  <e15[3],e16[1],e19[3],e18[1]> <e21[3],e22[1],e24[3],e23[1]>; 

Gф = DG1  DG2  DG3  DG4 = (c1)  (c4)  (c5)  (c7) = <e2[1],e3[2],e10[1],e8[2]>  
 <e4[1],e5[2],e18[1],e7[2]>  <e11[1],e12[2],e23[1],e14[2]>  <e16[1],e17[2],e22[1],e20[2]>. 

5. Coloring non-planar cubic graphs 
An important case is the coloring of cycles in non-planar cubic graphs (Fig. 13). 
First, we select basis cycles in the graph:  
c1 = {e1,e2,e4,e6};  c2 = {e9,e10,e11,e12};  c3 = {e2,e3,e8,e11}; 
c4 = {e4,e5,e7,e10};  c5 = {e6,e7,e8,e9,e10};  c0 = {e1,e3,e5,e10,e12}. 
Let's represent colored disks for the given edge coloring in the following form: 

DR1 = (e1,G)   (e5,B)   (e9,G)   (e8,B)   (e6,G)   (e7,B)   (e12,G)   (e3,B) =  

= с1   с2   с3   с4; 

DB1 = (e1,G)   (e4,R)   (e6,G)   (e2,R) = с1; 

DB2 = (e9,G)   (e10,R)   (e13,G)   (e11,R) = с2; 

DG1 = (e2,R)   (e3,B)   (e11,R)   (e3,B) = с3; 

DG2 = (e4,R)   (e7,B)   (e10,R)   (e5,B) = с4. 
 



 

  

 
Fig. 13. Colored cubic non-planar graph H3. 

 
The colored 2-factors of the colored cubic non-planar graph H3 are:   
Rc = DR1; 

Bc = DB1   DB2; 

Gc = DG1   DG2; 
 
Thus, we can determine the colors of the basis cycles as follows: 
c1   (Rc   Bc)   G;  c2   (Rc   Bc)   G; 
c3   (Rc   Gc)   B;  c4   (Rc   Gc)   B; 
c5   W;    c0   W. 
 
Consider the edge coloring: 
e1   (c1   c0)   G + W = G;  e2   (c1   c3)   G + B = R; 
e3   (c3   c0)   B + W = B;  e4   (c1   c4)   G + B = R; 
e5   (c4   c0)   B + W = B;  e6   (c1   c5)   G + W = G; 
e7   (c4   c5)   B + W = B;  e8   (c3   c5)   B + W = B; 
e9   (c2   c5)   G + W = G; 
e10   (c2   c4   c5   c0)   G + W + W + B = R; 
e11   (c2   c3)   G + B = R;  e12   (c2   c0)   G + W = G. 
 
Next, consider the following non-planar graph Н4 (Fig. 14). Let’s single out the following ba-
sis cycles in this graph:  
c1 = {e1,e2,e5,e12,e15};  c2 = {e10,e11,e12,e16};  c3 = {e1,e3,e4,e7,e13}; 
c4 = {e4,e5,e6,e9,e17};  c5 = {e6,e7,e8,e11,e18};  c6 = {e8,e9,e10,e12,e15,e17};  
c7 = {e13,e14,e15,e16,e17,e18}; c0 = {e2,e3,e12,e14,e15,e17}. 
 



 

  

 
Fig. 14. Colored non-planar graph Н4. 

 
The colored disks for this edge coloring are as follows: 

DR1 = (e2,G)   (e12,B)   (e16,G)   (e11,B)   (e8,G)   (e9,B)   (e17,G)   (e5,B)   
  (e4,G)   (e7,B)   (e13,G)   (e3,B) = с1   с2   с3   с6; 

DB1 = (e1,R)   (e2,G)   (e10,R)   (e8,G)   (e6,R)   (e4,G)= с1   с4   с6; 

DB2 = (e13,G)   (e18,R)   (e16,G)   (e15,R)   (e17,G)   (e14,R) = с7; 

DG1 = (e10,R)   (e11,B)   (e18,R)   (e7,B)   (e6,R)   (e9,B)   (e14,R)   (e3,B)   
  (e1,R)   (e5,B)   (e15,R)   (e12,B) = с2   с3   с4   с7. 
 
Colored 2-factors of the colored cubic non-planar graph H4 are:  
Rc = DR1; 

Bc = DB1   DB2; 
Gc = DG1; 
 
From this, the colors of the basis cycles can be determined as: 
c1   (Rc   Bc)   G;  c2   (Rc   Gc)   B; 
c3   (Rc   Gc)   B;  c4   (Bc   Gc)   R; 
c5   W;    c6   (Bc   Rc)   G; 
c7   (Bc   Gc)   R;  c0   W. 
 
Consider the edge coloring:  
e1   (c1   c3)   G + B = R;  e2   (c1   c0)   G + W = G; 
e3   (c3   c0)   B + W = B;  e4   (c3   c4)   B + R = G; 
e5   (c1   c4)   G + R = B;  e6   (c4   c5)   R + W = R; 
e7   (c3   c5)   B + W = B;  e8   (c5   c6)   G + W = G; 
e9   (c4   c6)   R + G = B;  e10   (c2   c6   B + G = R; 
e11   (c2   c5)   B + W = B; 
e12   (c1   c2   c6   c0)   G + B + G + W = B; 
e13   (c3   c7)   B + R = G;  e14   (c7   c0)   R + W = R; 
e15   (c7   c0)   R + W = R;  e16   (c2   c7)   B + R = G; 
e17   (c4   c6   c7   c0)   G + R + W + R = G; 
e18   (c5   c7)   R + W = R. 
 
Hence, Formula 5 is also applicable to colored non-planar graphs. 



 

  

6. Colored rotation of vertices 
A cyclic order of the form 1 – 2 – 3 (R – B – G) of the traversal of edges for a vertex of a plane 
cubic graph H is further denoted as the colored rotation of vertices. If the edges of a vertex 
are colored with three colors, then the order of traversing the colors 1 – 2 – 3 (R – B – G) for 
colored edges can be either clockwise or counterclockwise. We put “+1” in correspondence 
with those vertices for which color rotation occurs clockwise, and “-1” – with those for which 
the rotation direction is opposite. Consider the following color rotation of the vertices shown 
in Fig. 15. 
 

 
Fig. 15. Colored rotation of vertices. 

 
Then, for the set of vertices belonging to the face of a plane cubic graph, we can write the 
Heawood system of equations [1] for each basis cycle and rim: 

 

(6) 

where  =1,2,... ,m-n+2. 
At the same time, the solution of the Heawood system determines the coloring, since in the 
Heawood system the clockwise colored rotation of the vertices of a plane cubic graph can be 
put in correspondence with “+1”, and the counterclockwise colored rotation – with “-1”. 
Thus, it is possible to write the Heawood equations [1] in the following form: 

x(v1) + x(v4) + x(v5) + x(v8) = (-1) + (+1) + (-1) + (+1)  0 (mod 3); 

x(v1) + x(v2) + x(v3) + x(v4) = (-1) + (-1) + (+1) + (+1)  0 (mod 3); 

x(v5) + x(v6) + x(v7) + x(v8) = (-1) + (-1) + (+1) + (+1)  0 (mod 3); 

x(v2) + x(v3) + x(v10) + x(v11) = (-1) + (+1) + (-1) + (+1)  0 (mod 3); 

x(v6) + x(v7) + x(v14) + x(v15) = (-1) + (+1) + (-1) + (+1)  0 (mod 3); 

x(v3) + x(v4) + x(v5) + x(v6) + x(v9) + x(v10) + x(v15) + x(v16) =  

= (+1) + (+1) + (-1) + (-1) + (-1) + (-1) + (+1) + (+1)  0 (mod 3); 

x(v9) + x(v12) + x(v13) + x(v16) = (-1) + (+1) + (-1) + (+1)  0 (mod 3); 

x(v9) + x(v10) + x(v11) + x(v12) = (-1) + (-1) + (+1) + (+1)  0 (mod 3); 

x(v13) + x(v14) + x(v15) + x(v16) = (-1) + (-1) + (+1) + (+1)  0 (mod 3); 

x(v1) + x(v2) + x(v7) + x(v8) + x(v11) + x(v12) + x(v13) + x(v14) =  
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= (-1) + (-1) + (+1) + (+1) + (+1) + (+1) + (-1) + (-1)  0 (mod 3); 

 
The following theorem holds for maximal planar graphs. 
Theorem 1 [4]. Let M be the set of vertices of a plane cubic graph. Then for any correct col-
oring  

)4(mod0
M

x




 
(7) 

Indeed, 
x(v1) + x(v2) + x(v3) + x(v4) + x(v5) + x(v6) + x(v7) + x(v8) + x(v9) + x(v10) + x(v11) + x(v12) + 
x(v13) + x(v14) + x(v15) + x(v16) = (-1) + (-1) + (+1) + (+1) + (-1) + (+1) + (+1) + (-1) + (-1) + (-1) 

+ (+1) + (+1) + (-1) + (-1) + (+1) + (+1)  0 (mod4). 

 
Thus, we can construct closed Heawood paths in a plane colored cubic graph, sequentially se-
lecting edges according to the color rotation of the vertices. 

1  = <e3[1],e10[2],e9[3],e11[1],e14[2],e21[3],e20[1],e16[2],e15[3],e18[1],e5[2],e1[3]>; 

2  = <e3[1],e2[2],e6[3],e4[1],e5[2],e19[3],e20[1],e22[2],e24[3],e23[1],e14[2],e13[3]>; 

3  = <e23[1],e12[2],e9[3],e8[1],e2[2],e1[3],e4[1],e7[2],e15[3],e17[1],e22[2],e21[3]>; 

4  = <e11[1],e12[2],e24[3],e17[1],e16[2],e19[3],e18[1],e7[2],e6[3],e8[1],e10[2],e13[3]>. 
 
Heawood closed paths pass through an edge twice, but the second time is always in the oppo-
site direction. The length of the Heawood closed path is a multiple of three. 

7. Conclusion 
The article addresses algebraic methods for coloring arbitrary – both plane and non-planar – 
cubic graphs. The methods are partially based on the corollaries of the Tait’s theorem and the 
coloring of a plane cubic graph is described using the fourth-order Klein group transfor-
mation. It is established that the topological drawing of a plane graph, which is formally de-
scribed by vertices rotation, induces basis simple cycles of the cycle subspace of a graph. The 
transition to graph coloring is done by coloring the edges of basis cycles. It is assumed that 
the coloring was made by the methods presented in [3]. Details on the formation of colored 
disks based on the coloring of edges are presented in the article. The authors introduce the 
concept of embeddability of colored disks in order to unambiguously describe the representa-
tion of colored disks by means of basis cycles. In addition, the issues related to the mathemat-
ical description of colored disks rotation operation and their subsequent recoloring are con-
sidered in the article. The relationship between the colored vertex rotation of a plane cubic 
graph and the closed Heawood paths is revealed and formally described. 
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